The heights of dogs, in inches, in a city are normally distributed with a population standard deviation of 7 inches and an unknown population mean. If a random sample of 20 dogs is taken and results in a sample mean of 21 inches, find a 95% confidence interval for the population mean. z0.10z0.10 z0.05z0.05 z0.025z0.025 z0.01z0.01 z0.005z0.005 1.282 1.645 1.960 2.326 2.576 You may use a calculator or the common z values above. Round the final answer to two decimal places.

Respuesta :

Answer:

The 95% confidence interval  is  [tex] 17.932  <  \mu <  20  + 22.068[/tex]

Step-by-step explanation:

From the question we are told that

  The population standard deviation is  [tex]\sigma =7 \ inches[/tex]

  The sample size is  n  =  20

  The sample mean is  [tex]\= x = 20[/tex]

From the question we are told the confidence level is  95% , hence the level of significance is    

      [tex]\alpha = (100 - 95 ) \%[/tex]

=>   [tex]\alpha = 0.05[/tex]

Generally from the normal distribution table the critical value  of  [tex]\frac{\alpha }{2}[/tex] is  

   [tex]Z_{\frac{\alpha }{2} } =  1.96[/tex]

Generally the margin of error is mathematically represented as  

      [tex]E = Z_{\frac{\alpha }{2} } *  \frac{\sigma }{\sqrt{n} }[/tex]

=>    [tex]E = 1.96 *  \frac{7 }{\sqrt{20} }[/tex]

=>    [tex]E = 2.068[/tex]        

Generally 95% confidence interval is mathematically represented as  

      [tex]\= x -E <  \mu <  \=x  +E[/tex]

=>     [tex] 20  - 2.068  <  \mu <  20  + 2.068[/tex]

=>     [tex] 17.932  <  \mu <  20  + 22.068[/tex]