Respuesta :
Answer:
1) The slope of the line segment AB is [tex]\frac{4}{3}[/tex].
2) The length of the line segment AB is 10.
3) The coordinates of the midpoint of the line segment AB is [tex]M(x,y) = (5,7)[/tex].
4) The slope of a line perpendicular to line segment AB is [tex]-\frac{3}{4}[/tex].
Step-by-step explanation:
1) Let [tex]A(x,y) = (2,3)[/tex] and [tex]B(x,y) = (8,11)[/tex]. From Analytical Geometry, we get that slope of AB ([tex]m_{AB}[/tex]), dimensionless, is determined by the following formula:
[tex]m_{AB} = \frac{y_{B}-y_{A}}{x_{B}-x_{A}}[/tex] (1)
If we know that [tex]x_{A} = 2[/tex], [tex]x_{B} = 8[/tex], [tex]y_{A} = 3[/tex] and [tex]y_{B} = 11[/tex], the slope of the line segment is:
[tex]m_{AB} = \frac{11-3}{8-2}[/tex]
[tex]m_{AB} = \frac{4}{3}[/tex]
The slope of the line segment AB is [tex]\frac{4}{3}[/tex].
2) The length of the line segment AB ([tex]l_{AB}[/tex]), dimensionless, can be calculated by the Pythagorean Theorem:
[tex]l_{AB} =\sqrt{(x_{B}-x_{A})^{2}+(y_{B}-y_{A})^{2}}[/tex] (2)
If we know that [tex]x_{A} = 2[/tex], [tex]x_{B} = 8[/tex], [tex]y_{A} = 3[/tex] and [tex]y_{B} = 11[/tex], the length of the line segment AB is:
[tex]l_{AB} = \sqrt{(8-2)^{2}+(11-3)^{2}}[/tex]
[tex]l_{AB} = 10[/tex]
The length of the line segment AB is 10.
3) The coordinates of the midpoint of the line segment AB are, respectively:
[tex]x_{M} = \frac{x_{A}+x_{B}}{2}[/tex] (3)
[tex]y_{M} = \frac{y_{A}+y_{B}}{2}[/tex] (4)
If we know that [tex]x_{A} = 2[/tex], [tex]x_{B} = 8[/tex], [tex]y_{A} = 3[/tex] and [tex]y_{B} = 11[/tex], the coordinates of the midpoint of the line segment AB are, respectively:
[tex]x_{M} = \frac{2+8}{2}[/tex]
[tex]x_{M} = 5[/tex]
[tex]y_{M} = \frac{3+11}{2}[/tex]
[tex]y_{M} = 7[/tex]
The coordinates of the midpoint of the line segment AB is [tex]M(x,y) = (5,7)[/tex].
4) From Analytical Geometry we can determine the slope of a line perpendicular to line segment AB as a function of the slope of the line segment:
[tex]m_{\perp} = -\frac{1}{m_{AB}}[/tex] (5)
If we know that [tex]m_{AB} = \frac{4}{3}[/tex], then the slope of a line perpendicular to AB is:
[tex]m_{\perp} = - \frac{1}{\frac{4}{3} }[/tex]
[tex]m_{\perp} = -\frac{3}{4}[/tex]
The slope of a line perpendicular to line segment AB is [tex]-\frac{3}{4}[/tex].