HELP!!! STATS!!!
A random sample of 100 felony trials showed a sample mean waiting time between arrest and trial = 173 days with a population standard deviation of waiting times = 28 days. Find a 99% confidence interval for the population mean waiting time.

Stats question, I'm really stck please help me!

Respuesta :

Answer:

The 99% confidence interval is   [tex] 165.776  <  \mu <  180.224  [/tex]  

Step-by-step explanation:

From the question we are told that

     The sample size is  n  = 100

     The sample mean is  [tex]\= x = 173 \ days[/tex]

      The population standard deviation is  [tex]\sigma = 28 \ days[/tex]  

From the question we are told the confidence level is  99% , hence the level of significance is    

      [tex]\alpha = (100 - 99 ) \%[/tex]

=>   [tex]\alpha = 0.01[/tex]

Generally from the normal distribution table the critical value  of  [tex]\frac{\alpha }{2}[/tex] is  

   [tex]Z_{\frac{\alpha }{2} } = 2.58 [/tex]

Generally the margin of error is mathematically represented as  

      [tex]E = Z_{\frac{\alpha }{2} } *  \frac{\sigma }{\sqrt{n} }[/tex]

      [tex]E = 2.58  *  \frac{28 }{\sqrt{100} }[/tex]

=>    [tex]E = 7.224 [/tex]

Generally 95% confidence interval is mathematically represented as  

      [tex]\= x -E <  \mu <  \=x  +E[/tex]

=>     [tex] 173 -7.224  <  \mu < 173 + 7.224  [/tex]    

=>     [tex] 165.776  <  \mu < 180.224  [/tex]