Respuesta :

Answer:

15. [tex] x = 8 [/tex]

16. m<V = 103°

17. [tex] x = 14 [/tex]

Step-by-step explanation:

15. The figure given is quadrilateral. Sum of interior angles of a quadrilateral = 360°

Therefore:

[tex] (10x + 6) + (13x - 2) + (8x - 1) + (180 - 71) = 360 [/tex]

Solve for x

[tex] 10x + 6 + 13x - 2 + 8x - 1 + 109 = 360 [/tex]

Add like terms

[tex] 31x + 112 = 360 [/tex]

Subtract 112 from each side

[tex] 31x = 248 [/tex]

Divide both sides by 31

[tex] x = 8 [/tex]

16. The polygon is a hexagon. Sum of interior angles of a hexagon = 720. Therefore:

[tex] 90 + (7x + 3) + 128 + (5x + 8) + 111 + (9x - 19) = 720 [/tex]

Solve for x

[tex] 90 + 7x + 3 + 128 + 5x + 8 + 111 + 9x - 19 = 720 [/tex]

Add like terms

[tex] 321 + 21x = 720 [/tex]

Subtract 321 from each side

[tex] 21x = 399 [/tex]

Divide both sides by 21

[tex] x = 19 [/tex]

m<V = 5x + 8

Plug in the value of x

m<V = 5(19) + 8 = 95 + 8

m<V = 103

17. The polygon is a regular pentagon. This means each of the angles measures 108°. The sum of the interior angles all together is 540.

Therefore:

[tex] (9x - 18) = 108 [/tex]

Solve for x

[tex] 9x - 18 = 108 [/tex]

Add 18 to both sides

[tex] 9x = 126 [/tex]

Divide both sides by 9

[tex] x = 14 [/tex]