Given:
The vertices of square WXYZ are W(1,7), X(6,5), Y(4,0), and Z(-1, 2).
Consider the rule of transformation is [tex](x, y)\to (x-7, y-6)[/tex].
To find:
The new coordinates.
Solution:
We have,
[tex](x, y)\to (x-7, y-6)[/tex]
Using the above rule of transformation, we get
[tex]W(1, 7)\to W'(1-7, 7-6)=W'(-6,1)[/tex]
[tex]X(6, 5)\to X'(6-7, 5-6)=X'(-1,-1)[/tex]
[tex]Y(4, 0)\to Y'(4-7, 0-6)=Y'(-3,-6)[/tex]
[tex]Z(-1, 2)\to Z'(-1-7, 2-6)=Z'(-8,-4)[/tex]
Therefore, the new vertices are W'(-6,1), X'(-1,-1), Y'(-3,-6) and Z'(-8,-4).