Respuesta :
Answer:
It is False.
Step-by-step explanation:
When you substitute the coordinates into the inequality equation :
[tex]y \geqslant 10x + 5[/tex]
[tex]let \: x = 5,y = 10[/tex]
[tex]10 \geqslant 10(5) + 5[/tex]
[tex]10 \geqslant 55 \: (false)[/tex]
Therefore, 10 isn't greater than 55.
Solution:-
- (x,y)=(5,10)
[tex]\qquad\quad {:}\longmapsto\sf x=5 [/tex]
[tex]\qquad\quad {:}\longmapsto\sf y=10 [/tex]
- Write the inequality equation
[tex]\qquad\quad {:}\longmapsto\sf y \geqslant 10x+5[/tex]
- Substitute the values
[tex]\qquad\quad {:}\longmapsto\sf 10 \geqslant 10 (5)+5 [/tex]
[tex]\qquad\quad {:}\longmapsto\sf 10 \geqslant 50+5 [/tex]
[tex]\qquad\quad {:}\longmapsto\sf 10 \lt 55 [/tex]
[tex]\therefore \sf y \geqslant 10x+5 {\boxed {False}}[/tex]