Respuesta :

Answer:

[tex]f(x)=4x^2[/tex]

Step-by-step explanation:

Quadratic Model

The quadratic function can be expressed in the form:

[tex]f(x)=ax^2+bx+c[/tex]

Where a,b, and c are constants to be determined using the points through which the function passes.

We have the points (-2,16) (0,0) (1,4). To find the values of a,b,c we just substitute the values of x and y and solve the system of equations.

Point (0,0):

[tex]f(0)=a*0^2+b*0+c=0[/tex]

It follows that

c=0

Point (-2,16):

[tex]f(0)=a*(-2)^2+b*(-2)+c=16[/tex]

Operating:

[tex]a*(4)+b*(-2)+c=16[/tex]

Since c=0:

[tex]4a-2b=16[/tex]

Divide by 2:

[tex]2a-b=8\qquad\qquad [1][/tex]

Point (1,4):

[tex]f(1)=a*(1)^2+b*(1)+c=4[/tex]

[tex]a*(1)+b*(1)+c=4[/tex]

Since c=0:

[tex]a+b=4\qquad\qquad [2][/tex]

Adding [1] + [2]:

2a+a=12

3a=12

a=12/3=4

a=4

From [2]

b=4-a

b=4-4=0

b=0

The model is:

[tex]\boxed{f(x)=4x^2}[/tex]