Answer:
The width is 87
Step-by-step explanation:
Given
Represent Length with L and Width with W
Variation: Inverse Proportion
[tex]L \alpha \frac{1}{W}[/tex]
[tex]L = 58; W = 3[/tex]
Required
Solve for W when L = 2
First, we need to determine the constant of variation
[tex]L \alpha \frac{1}{W}[/tex]
[tex]L = \frac{k}{W}[/tex]
Where
k = constant of variation
Substitute the following values: [tex]L = 58; W = 3[/tex]
[tex]58 = \frac{k}{3}[/tex]
Solve for k
[tex]k = 58 * 3[/tex]
[tex]k = 174[/tex]
To solve for W when L = 2, we simply substitute values for L and K in the expression [tex]L = \frac{k}{W}[/tex]
[tex]2 = \frac{174}{W}[/tex]
Solve for W
[tex]2 * W = 174[/tex]
[tex]2 W = 174[/tex]
[tex]W = 174/2[/tex]
[tex]W = 87[/tex]
Hence, the width is 87