A 90% confidence interval for a population mean is given as (17.68, 22.02). This confidence interval is based on a simple random sample of 36 observations. Calculate the sample mean and standard deviation. Use the t-distribution in any calculations.

Respuesta :

Answer:

The correct solution is "7.704". The further explanation is given below.

Step-by-step explanation:

According to the question,

[tex]t_{\alpha/2},df = 1.690[/tex]

Sample mean,

[tex]\bar{x} = \frac{(17.68 + 22.02)}{2}[/tex]

  [tex]=19.85[/tex]

The Margin of error (E),

= [tex]Upper \ confidence \ interval - \bar{x}[/tex]

= [tex]22.02 - 19.85[/tex]

= [tex]2.17[/tex]

Now,

⇒ [tex]s = \frac{ E\times \sqrt n }{t_{\alpha/2},df}[/tex]

      [tex]=\frac{ 2.17\times \sqrt 36 }{ 1.690}[/tex]

      [tex]= 7.704[/tex]