Respuesta :
The fraction 2-x+1/x-2-x-4/x+2 can be written as a single fraction as [tex]\mathbf{ =\dfrac{ x-1 }{6x + 12}}[/tex]
The fraction refers to the representation of numbers with their variable in the numerator(the upper part) and the denominator(the lower part) which are separated by a division line.
From the information given, we have:
[tex]\mathbf{ =\dfrac{\dfrac{2 - (x+1) }{x-2-x-4}}{(x+2)}}[/tex]
This can be well represented as:
[tex]\mathbf{ =\dfrac{2 - (x+1) }{x-2-x-4} \times \dfrac{1}{(x+2)}}[/tex]
[tex]\mathbf{ =\dfrac{2 - x-1 }{-6} \times \dfrac{1}{(x+2)}}[/tex]
[tex]\mathbf{ =\dfrac{ - x+1 }{-6} \times \dfrac{1}{(x+2)}}[/tex]
[tex]\mathbf{ =\dfrac{ - x+1 }{-6(x + 2)}}[/tex]
[tex]\mathbf{ =\dfrac{ - x+1 }{-6x - 12}}[/tex]
Multiply both numerator and denominator by (-), we have:
[tex]\mathbf{ =\dfrac{ x-1 }{6x + 12}}[/tex]
Learn more about fractions here:
https://brainly.com/question/6201432?referrer=searchResults