Respuesta :

Answer:

2x-3/3

Step-by-step explanation:

Hope this helps

The fraction 2-x+1/x-2-x-4/x+2  can be written as a single fraction as [tex]\mathbf{ =\dfrac{ x-1 }{6x + 12}}[/tex]

The fraction refers to the representation of numbers with their variable in the numerator(the upper part) and the denominator(the lower part) which are separated by a division line.

From the information given, we have:

[tex]\mathbf{ =\dfrac{\dfrac{2 - (x+1) }{x-2-x-4}}{(x+2)}}[/tex]

This can be well represented as:

[tex]\mathbf{ =\dfrac{2 - (x+1) }{x-2-x-4} \times \dfrac{1}{(x+2)}}[/tex]

[tex]\mathbf{ =\dfrac{2 - x-1 }{-6} \times \dfrac{1}{(x+2)}}[/tex]

[tex]\mathbf{ =\dfrac{ - x+1 }{-6} \times \dfrac{1}{(x+2)}}[/tex]

[tex]\mathbf{ =\dfrac{ - x+1 }{-6(x + 2)}}[/tex]

[tex]\mathbf{ =\dfrac{ - x+1 }{-6x - 12}}[/tex]

Multiply both numerator and denominator by (-), we have:

[tex]\mathbf{ =\dfrac{ x-1 }{6x + 12}}[/tex]

Learn more about fractions here:

https://brainly.com/question/6201432?referrer=searchResults