Answer:
[tex]\bold{x_1=-\dfrac{3+\sqrt{41}}{2}\approx-4.7\ ,\quad x_2=-\dfrac{3-\sqrt{41}}{2}\approx1.7}[/tex]
Step-by-step explanation:
[tex]-2x^2-3x+4=0\\\\a=-2\,,\ b=-3\,,\ c=4\\\\\\x=\dfrac{-b-\sqrt{b^2\pm4ac}}{2a}=\dfrac{-(-3)\pm\sqrt{(-3)^2-4(-2)(4)}}{2(-1)}=\dfrac{3\pm\sqrt{9+32}}{-2}\\\\\\x_1=-\dfrac{3+\sqrt{41}}{2}\approx-4.7\ ,\qquad x_2=-\dfrac{3-\sqrt{41}}{2}\approx1.7[/tex]