Respuesta :

Answer:

0.375 or 3/8

Step-by-step explanation:

:

            1

Simplify   ——

           12

Equation at the end of step

1

:

  29     5      1

 (—— -  ——) +  ——

  48    16     12

STEP

2

:

            5

Simplify   ——

           16

Equation at the end of step

2

:

  29     5      1

 (—— -  ——) +  ——

  48    16     12

STEP

3

:

           29

Simplify   ——

           48

Equation at the end of step

3

:

  29     5      1

 (—— -  ——) +  ——

  48    16     12

STEP

4

:

Calculating the Least Common Multiple :

4.1    Find the Least Common Multiple

     The left denominator is :       48  

     The right denominator is :       16  

       Number of times each prime factor

       appears in the factorization of:

Prime  

Factor   Left  

Denominator   Right  

Denominator   L.C.M = Max  

{Left,Right}  

2 4 4 4

3 1 0 1

Product of all  

Prime Factors  48 16 48

     Least Common Multiple:

     48  

Calculating Multipliers :

4.2    Calculate multipliers for the two fractions

   Denote the Least Common Multiple by  L.C.M  

   Denote the Left Multiplier by  Left_M  

   Denote the Right Multiplier by  Right_M  

   Denote the Left Deniminator by  L_Deno  

   Denote the Right Multiplier by  R_Deno  

  Left_M = L.C.M / L_Deno = 1

  Right_M = L.C.M / R_Deno = 3

Making Equivalent Fractions :

4.3      Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

  L. Mult. • L. Num.      29

  ——————————————————  =   ——

        L.C.M             48

  R. Mult. • R. Num.      5 • 3

  ——————————————————  =   —————

        L.C.M              48  

Adding fractions that have a common denominator :

4.4       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

29 - (5 • 3)      7

————————————  =  ——

     48          24

Equation at the end of step

4

:

  7     1

 —— +  ——

 24    12

STEP

5

:

Calculating the Least Common Multiple :

5.1    Find the Least Common Multiple

     The left denominator is :       24  

     The right denominator is :       12  

       Number of times each prime factor

       appears in the factorization of:

Prime  

Factor   Left  

Denominator   Right  

Denominator   L.C.M = Max  

{Left,Right}  

2 3 2 3

3 1 1 1

Product of all  

Prime Factors  24 12 24

     Least Common Multiple:

     24  

Calculating Multipliers :

5.2    Calculate multipliers for the two fractions

   Denote the Least Common Multiple by  L.C.M  

   Denote the Left Multiplier by  Left_M  

   Denote the Right Multiplier by  Right_M  

   Denote the Left Deniminator by  L_Deno  

   Denote the Right Multiplier by  R_Deno  

  Left_M = L.C.M / L_Deno = 1

  Right_M = L.C.M / R_Deno = 2

Making Equivalent Fractions :

5.3      Rewrite the two fractions into equivalent fractions

  L. Mult. • L. Num.       7

  ——————————————————  =   ——

        L.C.M             24

  R. Mult. • R. Num.       2

  ——————————————————  =   ——

        L.C.M             24

Adding fractions that have a common denominator :

5.4       Adding up the two equivalent fractions

7 + 2     3

—————  =  —

 24       8