Respuesta :

Answers:

  • g(-1) = -1
  • g(1) = -3/2
  • g(5) = -7/2

======================================

Explanation:

The piecewise function g(x) is defined based on what the input is.

  • If the input x is less than -2, then g(x) = 2
  • Or if [tex]-2 \le x < 1[/tex] then g(x) = -(x-1)^2+3
  • Or if [tex]x \ge 1[/tex] then g(x) = (-1/2)x-1

---------------

In the case of g(-1), we have x = -1 which makes [tex]-2 \le x < 1[/tex] true.

So we'll use the second piece

g(x) = -(x-1)^2+3

g(-1) = -(-1-1)^2+3

g(-1) = -(-2)^2+3

g(-1) = -4+3

g(-1) = -1

----------------

For g(1), we have x = 1 which makes [tex]x \ge 1[/tex] true

We'll use the third piece

g(x) = (-1/2)x-1

g(1) = (-1/2)*1 - 1

g(1) = -1/2 - 1

g(1) = -1/2 - 2/2

g(1) = -3/2

-----------------

For g(5), we have x = 5 which makes [tex]x \ge 1[/tex] true

g(x) = (-1/2)x-1

g(5) = (-1/2)*5-1

g(5) = -5/2 - 1

g(5) = -5/2 - 2/2

g(5) = -7/2