Set up an equation by finding the constant of proportionality, k, then answer the question. If m is directly proportional to the square of b, and m=2 when b=8, find m when b=9

Respuesta :

Answer: [tex]m=\dfrac{81}{32}[/tex]

Step-by-step explanation:

Given: m is directly proportional to the square of b.

[tex]m=kb^2[/tex], where k= constant of proportionality

when m= 2 and b=8 , we get

[tex]2=k(8)^2\\\\\Rightarrow\ 2=k(64)\\\\\Rightarrow\ k=\dfrac{2}{64}\\\\\Rightarrow\ k=\dfrac{1}{32}[/tex]

so the equation becomes [tex]m=\dfrac{1}{32}b^2[/tex]

When b= 9

[tex]m=\dfrac{1}{32}(9)^2=\dfrac{1}{32}\times81=\dfrac{81}{32}[/tex]

Hence, [tex]m=\dfrac{81}{32}[/tex]