Objects with masses of 165 kg and a 465 kg are separated by 0.340 m. (a) Find the net gravitational force exerted by these objects on a 60.0 kg object placed midway between them. magnitude N direction ---Select--- (b) At what position (other than infinitely remote ones) can the 60.0 kg object be placed so as to experience a net force of zero

Respuesta :

Answer:

(a) [tex]F_{net}[/tex] = 4.19 x [tex]10^{-5}[/tex] N, and its direction is towards [tex]m_{2}[/tex].

(b) It must be placed inside a hollow shell.

Explanation:

Let, [tex]m_{1}[/tex] = 165 kg, [tex]m_{2}[/tex] = 465 kg, [tex]m_{3}[/tex] = 60 kg, and the distance between [tex]m_{1}[/tex] and [tex]m_{2}[/tex] is 0.340 m.

(a) Since [tex]m_{3}[/tex] is placed midway between [tex]m_{1}[/tex] and [tex]m_{2}[/tex], then its distance to both masses is 0.170 m.

From the Newton's law of universal gravitation,

F = [tex]\frac{Gm_{1}m_{2} }{r^{2} }[/tex]

Where all variables have their usual meaning.

Then,

a. [tex]F_{net}[/tex] = [tex]F_{23}[/tex] - [tex]F_{13}[/tex]

[tex]F_{13}[/tex] = [tex]\frac{6.67*10^{-11}*165*60 }{(0.17)^{2} }[/tex]

     = 2.25 x [tex]10^{-5}[/tex] N

[tex]F_{23}[/tex] = [tex]\frac{6.67*10^{-11}*465*60 }{(0.17)^{2} }[/tex]

     = 6.44 x [tex]10^{-5}[/tex] N

∴ [tex]F_{net}[/tex] =  = 6.44 x [tex]10^{-5}[/tex] - 2.25 x [tex]10^{-5}[/tex]

              = 4.19 x [tex]10^{-5}[/tex] N

The net force exerted by the two masses on the 60 kg object is 4.19 x [tex]10^{-5}[/tex]  N.

(ii) /[tex]F_{net}[/tex]/ = /[tex]F_{23}[/tex]/ - /[tex]F_{13}[/tex]/

              = 6.44 x [tex]10^{-5}[/tex] - 2.25 x [tex]10^{-5}[/tex]

              = 4.19 x [tex]10^{-5}[/tex] N

(iii) The direction of the net force is to the right i.e towards [tex]m_{2}[/tex].

(b) For the net force experienced by the 60 kg object to be zero, it must be placed inside a hollow shell.