Respuesta :

Answer:

  [tex]\frac{S.A - 2\pi r^{2} }{2\pi r}[/tex]

Step-by-step explanation:

Formula for the surface area of a cylinder;

   Surface area = 2[tex]\pi[/tex]r² + 2[tex]\pi[/tex]rh

  Problem:

 Make h the subject of the expression;

Solution:

  Given expression:

          S.A = 2[tex]\pi[/tex]r² + 2[tex]\pi[/tex]rh  

Add (- 2[tex]\pi[/tex]r² ) to both sides of the expression:

      S.A + ( -2[tex]\pi[/tex]r² ) =  ( -2[tex]\pi[/tex]r² ) +  2[tex]\pi[/tex]r²  + 2[tex]\pi[/tex]rh

          S.A -  2[tex]\pi[/tex]r²  = 2 [tex]\pi[/tex]rh

Divide both sides by  2[tex]\pi[/tex]r

        [tex]\frac{S.A - 2\pi r^{2} }{2\pi r}[/tex]  = [tex]\frac{2\pi rh}{2\pi r}[/tex]

            h =   [tex]\frac{S.A - 2\pi r^{2} }{2\pi r}[/tex]