contestada

The maximum speed with which you can throw a stone is about 20 m/s. Can you hit a window 45 m away horizontally and 10 m up from the point where the stone leaves your hand? What is the maximum height of a window you can hit at this distance?

Respuesta :

Answer:

 y = 17 m

Explanation:

For this projectile launch exercise, let's write the equation of position

          x = v₀ₓ t

          y = [tex]v_{oy}[/tex] t - ½ g t²

let's substitute

          45 = v₀ cos θ t

          10 = v₀ sin θ t - ½ 9.8 t²

the maximum height the ball can reach where the vertical velocity is zero

 

           v_{y} = v_{oy} - gt

           0 = v₀ sin θ - gt

           0 = v₀ sin θ - 9.8 t

Let's write our system of equations

         45 = v₀ cos θ  t

         10 = v₀ sin θ t - ½ 9.8 t²

         0 = v₀ sin θ - 9.8 t

We have a system of three equations with three unknowns for which it can be solved.

Let's use the last two

        v₀ sin θ = 9.8 t

we substitute

        10 = (9.8 t) t - ½ 9.8 t2

        10 = ½ 9.8 t2

        10 = 4.9 t2

        t = √ (10 / 4.9)

        t = 1,429 s

Now let's use the first equation and the last one

         45 = v₀ cos θ t

         0  = v₀ sin θ - 9.8 t

         9.8 t = v₀  sin θ

         45 / t = v₀ cos θ

we divide

         9.8t / (45 / t) = tan θ

          tan θ = 9.8 t² / 45

          θ = tan⁻¹ ( 9.8 t² / 45 )

          θ = tan⁻¹ (0.4447)

          θ = 24º

Now we can calculate the maximum height

         v_y² = [tex]v_{oy}^2[/tex] - 2 g y

         vy = 0

          y = v_{oy}^2 / 2g

          y = (20 sin 24)²/2 9.8

          y = 3,376 m

the other angle that gives the same result is

       θ‘= 90 - θ

       θ' = 90 -24

       θ'= 66'

for this angle the maximum height is

 

          y = v_{oy}^2 / 2g

          y = (20 sin 66)²/2 9.8

           y = 17 m

thisis the correct