Answer:
[tex] 4 {x}^{3} {y}^{2} \sqrt[3]{4xy}[/tex]
Step-by-step explanation:
[tex] \sqrt[3]{256 {x}^{10} {y}^{7} } \\ \\ = \sqrt[3]{( {4)}^{4} {(x)}^{9} \times x \times {(y)}^{6} \times y } \\ \\ = \sqrt[3]{ {4}^{3} \times 4 \times ({x}^{3})^{3} \times x \times ({y}^{2})^{3} \times y} \\ \\ = 4 \times {x}^{3} \times {y}^{2} \sqrt[3]{4 \times x \times y} \\ \\ \huge \red{ \boxed{ = 4 {x}^{3} {y}^{2} \sqrt[3]{4xy} }}[/tex]