Respuesta :

I think the answer is B
Gyzmo

Answer:

[tex]f(x)=4^{2x}[/tex]

Step-by-step explanation:

So we are given:

[tex]f(x)=(8^{\frac{2}{3}x})(16^{\frac{1}{2}x})[/tex]

and we have to find a function that will produce a similar graph. To do this, lets first simplify the given function.

Here are some properties of exponents that I will be using:

[tex]c^{\frac{n}{x}}=\sqrt[x]{c^{n}}=(\sqrt[x]{c})^{n}[/tex]

[tex](c^{x})^{n}=(c^{n})^{x}=c^{xn}[/tex]

[tex]c^{x}*c^{n}=c^{x+n}[/tex]

Now lets begin simplifying the function.

[tex]f(x)=(8^{\frac{2}{3}x})(16^{\frac{1}{2}x})[/tex]

[tex]=((\sqrt[3]{8^{2}})^{x})((\sqrt{16})^{x})[/tex]

[tex]=(4^{x})(4^{x})[/tex]

[tex]=4^{2x}[/tex]

So the correct answer would be [tex]f(x)=4^{2x}[/tex].

I hope you find my answer and explanation to be helpful. Happy studying.