Answer:
The value of [tex]x[/tex]:
[tex]\boxed {x = \frac{3y}{4} - 6}[/tex]
The value of [tex]y[/tex]:
[tex]\boxed {y = \frac{4x}{3} + 8}[/tex]
Step-by-step explanation:
Solve for the value of [tex]x[/tex]:
[tex]-4x + 3y = 24[/tex]
-Subtract [tex]3y[/tex] to both sides:
[tex]-4x + 3y - 3y = 24 - 3y[/tex]
[tex]-4x = 24 - 3y[/tex]
-Divide both sides by [tex]-4[/tex]:
[tex]\frac{-4x}{-4} = \frac{24 - 3y}{-4}[/tex]
[tex]\boxed {x = \frac{3y}{4} - 6}[/tex]
-----------------------------------------------------------------------
Solve for the value of [tex]y[/tex]:
[tex]-4x + 3y = 24[/tex]
-Add [tex]4x[/tex] to both sides:
[tex]-4x + 4x + 3y = 24 + 4x[/tex]
[tex]3y = 24 + 4x[/tex]
-Remember that the equation is in Standard Form:
[tex]3y = 4x + 24[/tex]
-Divide both sides by [tex]3[/tex]:
[tex]\frac{3y}{3} = \frac{4x + 24}{3}[/tex]
[tex]\boxed {y = \frac{4x}{3} + 8}[/tex]