Two forces,
vector F 1 = (5.90î − 5.60ĵ) N
and
vector F 2 = (4.65î − 5.55ĵ) N,
act on a particle of mass 2.10 kg that is initially at rest at coordinates
(−1.75 m, +4.15 m).

(a) What are the components of the particle's velocity at t=10.4s ?
(b) In what direction is the particle moving at t = 10.4 s? (+counterclockwise from the x axis)
(c) What displacement does the particle undergo during the first 10.4 s?
(d) What are the coordinates of the particle at t = 10.4 s? (in x and y meters)

Respuesta :

First compute the resultant force F:

[tex]\mathbf F_1=(5.90\,\mathbf i-5.60\,\mathbf j)\,\mathrm N[/tex]

[tex]\mathbf F_2=(4.65\,\mathbf i-5.55\,\mathbf j)\,\mathrm N[/tex]

[tex]\implies\mathbf F=\mathbf F_1+\mathbf F_2=(10.55\,\mathbf i-11.15\,\mathbf j)\,\mathrm N[/tex]

Then use Newton's second law to determine the acceleration vector [tex]\mathbf a[/tex] for the particle:

[tex]\mathbf F=m\mathbf a[/tex]

[tex](10.55\,\mathbf i-11.15\,\mathbf j)\,\mathrm N=(2.10\,\mathrm{kg})\mathbf a[/tex]

[tex]\mathbf a\approx(5.02\,\mathbf i-5.31\,\mathbf j)\dfrac{\rm m}{\mathrm s^2}[/tex]

Let [tex]\mathbf x(t)[/tex] and [tex]\mathbf v(t)[/tex] denote the particle's position and velocity vectors, respectively.

(a) Use the fundamental theorem of calculus. The particle starts at rest, so [tex]\mathbf v(0)=0[/tex]. Then the particle's velocity vector at t = 10.4 s is

[tex]\mathbf v(10.4\,\mathrm s)=\mathbf v(0)+\displaystyle\int_0^{10}\mathbf a(u)\,\mathrm du[/tex]

[tex]\mathbf v(10.4\,\mathrm s)=\left((5.02\,\mathbf i-5.31\,\mathbf j)u\,\dfrac{\rm m}{\mathrm s^2}\right)\bigg|_{u=0}^{u=10.4}[/tex]

[tex]\mathbf v(10.4\,\mathrm s)\approx(52.2\,\mathbf i-55.2\,\mathbf j)\dfrac{\rm m}{\rm s}[/tex]

If you don't know calculus, then just use the formula,

[tex]v_f=v_i+at[/tex]

So, for instance, the velocity vector at t = 10.4 s has x-component

[tex]v_{f,x}=0+\left(5.02\dfrac{\rm m}{\mathrm s^2}\right)(10.4\,\mathrm s)=52.2\dfrac{\rm m}{\mathrm s^2}[/tex]

(b) Compute the angle [tex]\theta[/tex] for [tex]\mathbf v(10.4\,\mathrm s)[/tex]:

[tex]\tan\theta=\dfrac{-55.2}{52.2}\implies\theta\approx-46.6^\circ[/tex]

so that the particle is moving at an angle of about 313º counterclockwise from the positive x axis.

(c) We can find the velocity at any time t by generalizing the integral in part (a):

[tex]\mathbf v(t)=\mathbf v(0)+\displaystyle\int_0^t\mathbf a\,\mathrm du[/tex]

[tex]\implies\mathbf v(t)=\left(5.02\dfrac{\rm m}{\mathrm s^2}\right)t\,\mathbf i+\left(-5.31\dfrac{\rm m}{\mathrm s^2}\right)t\,\mathbf j[/tex]

Then using the fundamental theorem of calculus again, we have

[tex]\mathbf x(10.4\,\mathrm s)=\mathbf x(0)+\displaystyle\int_0^{10.4}\mathbf v(u)\,\mathrm du[/tex]

where [tex]\mathbf x(0)=(-1.75\,\mathbf i+4.15\,\mathbf j)\,\mathrm m[/tex] is the particle's initial position. So we get

[tex]\mathbf x(10.4\,\mathrm s)=(-1.75\,\mathbf i+4.15\,\mathbf j)\,\mathrm m+\displaystyle\int_0^{10.4}\left(\left(5.02\dfrac{\rm m}{\mathrm s^2}\right)u\,\mathbf i+\left(-5.31\dfrac{\rm m}{\mathrm s^2}\right)u\,\mathbf j\right)\,\mathrm du[/tex]

[tex]\mathbf x(10.4\,\mathrm s)=(-1.75\,\mathbf i+4.15\,\mathbf j)\,\mathrm m+\dfrac12\left(\left(5.02\dfrac{\rm m}{\mathrm s^2}\right)u^2\,\mathbf i+\left(-5.31\dfrac{\rm m}{\mathrm s^2}\right)u^2\,\mathbf j\right)\bigg|_{u=0}^{u=10.4}[/tex]

[tex]\mathbf x(10.4\,\mathrm s)\approx(542\,\mathbf i-570\,\mathbf j)\,\mathrm m[/tex]

So over the first 10.4 s, the particle is displaced by the vector

[tex]\mathbf x(10.4\,\mathrm s)-\mathbf x(0)\approx(270\,\mathbf i-283\,\mathbf j)\,\mathrm m-(-1.75\,\mathbf i+4.15\,\mathbf j)\,\mathrm m\approx(272\,\mathbf i-287\,\mathbf j)\,\mathrm m[/tex]

or a net distance of about 395 m away from its starting position, in the same direction as found in part (b).

(d) See part (c).