Answer:
Following are the solution to this question:
Step-by-step explanation:
Given:
[tex]\bold{f(x) = cos(3x)}\\\to f'(x) = - 3 sin (3x)\\\to f''(x) = - 9 cos (3x)\\\to f'''(x) = 27 sin (3x)\\[/tex]
Similarly:
[tex]\bold{f(2.5)' = cos(6.75)}\\\to f'(2.5) = - 3 sin (6.75)\\\to f''(2.5) = - 9 cos (6.75)\\\to f'''(2.5) = 27 sin (2.5)\\[/tex]
calculating the order values [tex]\longrightarrow \cos(6.75)[/tex]:
In the 1st order:
[tex]\to cos(6.75) + (x-2.5) 3 sin (6.75)[/tex]
In the 2nd order:
[tex]\to cos(6.75) + [1- \frac{(x-2.5)^2}{2}9] + (x-2.5) 3 sin (6.75)[/tex]
In the 3rd order:
[tex]\to cos(6.75) + [1- \frac{9(x-2.5)^2}{2}] + 3 sin (6.75)(3(x-2.5) - \frac{27}{6} (1-2.5))[/tex]
In point a:
[tex]\boxed{\left\begin{array}{cccc}{Zero&First &Second&Third}\\0.993068457& 0.420690485&9.2635909&16.0135909\\\end{array}\right}[/tex]
In point b:
[tex]\boxed{\left\begin{array}{cccc}{First &Second&Third&Fourth}\\0.993068457& 0.420690485&9.2635909&16.0135909\\\end{array}\right}[/tex]
In point C:
At this point, data is missing.