Respuesta :
Answer:
a
[tex]\sigma = 101.23[/tex]
b
Lower quartile - [tex]M_1 = 66.5[/tex]
Median - [tex]M = 101[/tex]
Upper quartile - [tex]M_2 = 128.5[/tex]
c
Standard deviation
Step-by-step explanation:
From the question we are told that
The data is
Bristol 93
Cardiff 113
English Agents 77
English O 68
English P 44
English R 109
Glasgow 65
Liverpool 139
London 427
Manchester 189
Newcastle-on-Tyne 118
Scottish 24
Generally the mean is mathematically represented as
[tex]\= x = \frac{\sum x_i}{n}[/tex]
Here n is the sample with the value is 12
So
=> [tex]\= x = \frac{93 + 113 + \cdots + 118 + 24}{12}[/tex]
=> [tex]\= x = 122.92[/tex]
Generally the standard deviation is mathematically represented as
[tex]\sigma = \sqrt{\frac{\sum (x_i - \= x)}{n} }[/tex]
=> [tex]\sigma = \sqrt{\frac{(93 - 122.92)^ 2 + (113 - 122.92) + \cdots + (118 -122.92)^2 + (24 -122.92)^2}{12} }[/tex]
=> [tex]\sigma = 101.23[/tex]
Generally to compute the quartiles we first arrange the data in ascending order
So
Scottish....................24,
English P ...................44
Glasgow ..................65
English O .................68
English Agents......... 77
Bristol ..........................93
English R.................... 109
Cardiff......................... 113
Newcastle-on-Tyne.. 118
Liverpool..................... 139
Manchester................. 189
London......................... 427
Next we obtain the median
Looking at data, the median is
[tex]M = \frac{93 + 109}{2}[/tex]
=> [tex]M = 101[/tex]
Next is to divide the data in between 93 and 109
So the lower data set is
Scottish....................24,
English P ...................44
Glasgow ..................65
English O .................68
English Agents......... 77
Bristol ..........................93
The median of the lower data set is
[tex]M_1 = \frac{65 + 68}{2}[/tex]
[tex]M_1 = 66.5[/tex]
This median is known as lower quartile
Considering the second data set
English R.................... 109
Cardiff......................... 113
Newcastle-on-Tyne.. 118
Liverpool..................... 139
Manchester................. 189
London......................... 427
The median of the upper data set is
[tex]M_2 = \frac{118 + 139 }{2}[/tex]
=> [tex]M_2 = 128.5[/tex]
This median is known as upper quartile
The best measure for describing the spread of the distribution is the standard deviation because it measure how far each individual data deviates from the mean