Explain why the following equation is correct.

lim x → 5 x2 + x − 30 x − 5 = lim x → 5 (x + 6)

a. Since x2 + x − 30x − 5 and x + 6 are both continuous, the equation follows.
b. Since the equation holds for all x ≠ 5, it follows that both sides of the equation approach the same limit as x → 5.
c. This equation follows from the fact that the equation in part (a) is correct.
d. None of these
e. The equation is not correct.

Respuesta :

Answer:

The answer is "Option a".

Step-by-step explannation:

[tex]\to \bold{ \lim_{n \to \5} \frac{(x^2+x-30)}{(x-5)} = \lim_{n \to \5} (x+6) }\\\\[/tex]

[tex]\to \lim_{n \to \5} \frac{(x^2+(6-5)x-30)}{(x-5)} = \lim_{n \to \5} (x+6) \\\\\to \lim_{n \to \5} \frac{(x^2+6x-5x-30)}{(x-5)} = \lim_{n \to \5} (x+6) \\\\\to \lim_{n \to \5} \frac{x(x+6)-5(x+6)}{(x-5)} = \lim_{n \to \5} (x+6) \\\\\to \lim_{n \to \5} \frac{(x+6) (x-5)}{(x-5)} = \lim_{n \to \5} (x+6) \\\\\to \lim_{n \to \5} (x+6) = \lim_{n \to \5} (x+6) \\\\\to 5+6 =5+6\\\\\to 11 =11[/tex]

that's why the choice a is correct.