F(x)=3x 2 +9f, left parenthesis, x, right parenthesis, equals, 3, x, squared, plus, 9 and g(x)=\dfrac{1}{3}x^2-9g(x)= 3 1 ​ x 2 −9g, left parenthesis, x, right parenthesis, equals, start fraction, 1, divided by, 3, end fraction, x, squared, minus, 9 Write simplified expressions for f(g(x))f(g(x))f, left parenthesis, g, left parenthesis, x, right parenthesis, right parenthesis and g(f(x))g(f(x))g, left parenthesis, f, left parenthesis, x, right parenthesis, right parenthesis in terms of xxx. f(g(x))=f(g(x))=f, left parenthesis, g, left parenthesis, x, right parenthesis, right parenthesis, equals g(f(x))=g(f(x))=g, left parenthesis, f, left parenthesis, x, right parenthesis, right parenthesis, equals Are functions fff and ggg inverses?

Respuesta :

Answer:

[tex]f(g(x)) = \frac{1}{3}x^4 - 18x^2 + 252[/tex]

[tex]g(f(x)) = 3x^4 + 18x^2 + 18[/tex]

f(x) and g(x) and not inverse functions

Step-by-step explanation:

Given

[tex]f(x) = 3x^2 + 9[/tex]

[tex]g(x) = \dfrac{1}{3}x^2 - 9[/tex]

Required

Determine f(g(x))

Determine g(f(x))

Determine if both functions are inverse:

Calculating f(g(x))

[tex]f(x) = 3x^2 + 9[/tex]

[tex]f(g(x)) = 3(\frac{1}{3}x^2 - 9)^2 + 9[/tex]

[tex]f(g(x)) = 3(\frac{1}{3}x^2 - 9)(\frac{1}{3}x^2 - 9) + 9[/tex]

Expand Brackets

[tex]f(g(x)) = (x^2 - 27)(\frac{1}{3}x^2 - 9) + 9[/tex]

[tex]f(g(x)) = x^2(\frac{1}{3}x^2 - 9) - 27(\frac{1}{3}x^2 - 9) + 9[/tex]

[tex]f(g(x)) = \frac{1}{3}x^4 - 9x^2 - 9x^2 + 243 + 9[/tex]

[tex]f(g(x)) = \frac{1}{3}x^4 - 18x^2 + 252[/tex]

Calculating g(f(x))

[tex]g(x) = \dfrac{1}{3}x^2 - 9[/tex]

[tex]g(f(x)) = \frac{1}{3}(3x^2 + 9)^2 - 9[/tex]

[tex]g(f(x)) = \frac{1}{3}(3x^2 + 9)(3x^2 + 9) - 9[/tex]

[tex]g(f(x)) = (x^2 + 3)(3x^2 + 9) - 9[/tex]

Expand Brackets

[tex]g(f(x)) = x^2(3x^2 + 9) + 3(3x^2 + 9) - 9[/tex]

[tex]g(f(x)) = 3x^4 + 9x^2 + 9x^2 + 27 - 9[/tex]

[tex]g(f(x)) = 3x^4 + 18x^2 + 18[/tex]

Checking for inverse functions

[tex]f(x) = 3x^2 + 9[/tex]

Represent f(x) with y

[tex]y = 3x^2 + 9[/tex]

Swap positions of x and y

[tex]x = 3y^2 + 9[/tex]

Subtract 9 from both sides

[tex]x - 9 = 3y^2 + 9 - 9[/tex]

[tex]x - 9 = 3y^2[/tex]

[tex]3y^2 = x - 9[/tex]

Divide through by 3

[tex]\frac{3y^2}{3} = \frac{x}{3} - \frac{9}{3}[/tex]

[tex]y^2 = \frac{x}{3} - 3[/tex]

Take square root of both sides

[tex]\sqrt{y^2} = \sqrt{\frac{x}{3} - 3}[/tex]

[tex]y = \sqrt{\frac{x}{3} - 3}[/tex]

Represent y with g(x)

[tex]g(x) = \sqrt{\frac{x}{3} - 3}[/tex]

Note that the resulting value of g(x) is not the same as [tex]g(x) = \dfrac{1}{3}x^2 - 9[/tex]

Hence, f(x) and g(x) and not inverse functions