Answer:
[tex]n_{CO(NH_2)_2}=73.3molCO(NH_2)_2[/tex]
Explanation:
Hello.
In this case, given the two balanced chemical reactions:
[tex]CO(NH_2)_2 (l) \rightarrow HNCO(l) + NH_3(g)\\\\ 6HNCO(l) \rightarrow C_3N_3(NH_2)_3 (l) + 3CO_2(g)[/tex]
We first compute the moles of HNCO from the obtained 1.00 kg of melamine (molar mass 126 g/mol) by considering the 65 % yield:
[tex]m_{C_3N_3(NH_2)_3}^{theoretical}=\frac{1.00kg}{0.65}=1.54kg[/tex]
[tex]n_{HNCO}=1.54kgC_3N_3(NH_2)_3*\frac{1000g}{1kg}*\frac{1molC_3N_3(NH_2)_3}{126gC_3N_3(NH_2)_3} *\frac{6molHNCO}{1molC_3N_3(NH_2)_3} \\\\n_{HNCO}=73.3molHNCO[/tex]
Next, we compute the moles of urea in the first chemical reaction:
[tex]n_{CO(NH_2)_2}=73.3molHNCO*\frac{1molCO(NH_2)_2}{1molHNCO} \\\\n_{CO(NH_2)_2}=73.3molCO(NH_2)_2[/tex]
Best regards.