Answer:
(3,3)
Step-by-step explanation:
Given
[tex]Vertices: (0,0)\ (1,0)\ (0,1)[/tex]
[tex]Scale\ Factor = 3[/tex]
Required
Determine which can't be any of the new vertices
First, we need to determine the new vertices:
[tex]New\ Vertex = Scale\ Factor * Old\ Vertex[/tex]
For (0,0):
[tex]New\ Vertex = 3 * (0,0)[/tex]
[tex]New\ Vertex = (3 * 0,3 * 0)[/tex]
[tex]New\ Vertex = (0,0)[/tex]
For (1,0):
[tex]New\ Vertex = 3 * (1,0)[/tex]
[tex]New\ Vertex = (3 * 1,3 * 0)[/tex]
[tex]New\ Vertex = (3,0)[/tex]
For (0,1):
[tex]New\ Vertex = 3 * (0,1)[/tex]
[tex]New\ Vertex = (3 * 0,3 * 1)[/tex]
[tex]New\ Vertex = (0,3)[/tex]
Comparing the calculated new vertices to the list of given options; (3,3) can't be any of the new vertices of the new triangle