Respuesta :

Answer:

1.) [tex]\frac{2}{3}[/tex]

2.) [tex]7[/tex]

Step-by-step explanation:

1-4:

When given an equation, it is usually better to rewrite it in slope-intercept form:

[tex]y=mx+b[/tex]

Where:

  • m is the slope
  • b is the y-intercept (when x is equal to 0)
  • and x and y are the corresponding points (x,y)

1.) [tex]y=\frac{2}{3}x[/tex]

This is written in slope-intercept form as:

[tex]y=\frac{2}{3}x+0[/tex]

The slope is [tex]\frac{2}{3}[/tex].

2.) [tex]y=7x[/tex]

This is written in slope-intercept form as:

[tex]y=7x+0[/tex]

The slope is [tex]7[/tex].

Answer:

3.) [tex]3[/tex]

4.) [tex]\frac{1}{2}[/tex]

5.) [tex]40[/tex]

6.) [tex]15[/tex]

7.) [tex]8.25[/tex]

Step-by-step explanation:

3.) [tex]5y=15x[/tex]

Solve for y and convert to slope-intercept form:

Isolate the variable, y, by dividing both sides by 5:

[tex]\frac{5y}{5}=\frac{15x}{5}\\\\ y=3x[/tex]

This can be seen as:

[tex]y=3x+0[/tex]

The slope is [tex]3[/tex].

4.) [tex]8y=4x[/tex]

Solve for y and convert to slope-intercept form:

Isolate the variable y by dividing both sides by 8:

[tex]\frac{8y}{8} =\frac{4x}{8} \\\\y=\frac{1}{2}x[/tex]

This can be seen as:

[tex]y=\frac{1}{2} x+0[/tex]

The slope is [tex]\frac{1}{2}[/tex].

5-7:

When you are given coordinate points, use the slope formula:

[tex](x_{1},y_{1})\\\\(x_{2},y_{2})\\\\\frac{y_{2}-y_{1}}{x_{2}-x_{1}} =slope[/tex]

5.) Take two points:

[tex](1,40)(2,80)[/tex]

Insert into the slope formula:

[tex]\frac{80-40}{2-1}= \frac{40}{1}=40[/tex]

The slope is [tex]40[/tex].

6.) Take two points:

[tex](2,30)(4,60)[/tex]

Insert into the slope formula:

[tex]\frac{60-30}{4-2} =\frac{30}{2} =15[/tex]

The slope is [tex]15[/tex].

7.) Take two points:

[tex](5,41.25)(10,82.50)[/tex]

Insert into the slope formula:

[tex]\frac{82.50-41.25}{10-5}=\frac{41.25}{5} =8.25[/tex]

The slope is [tex]8.25[/tex].