Respuesta :
Answer:
1.) [tex]\frac{2}{3}[/tex]
2.) [tex]7[/tex]
Step-by-step explanation:
1-4:
When given an equation, it is usually better to rewrite it in slope-intercept form:
[tex]y=mx+b[/tex]
Where:
- m is the slope
- b is the y-intercept (when x is equal to 0)
- and x and y are the corresponding points (x,y)
1.) [tex]y=\frac{2}{3}x[/tex]
This is written in slope-intercept form as:
[tex]y=\frac{2}{3}x+0[/tex]
The slope is [tex]\frac{2}{3}[/tex].
2.) [tex]y=7x[/tex]
This is written in slope-intercept form as:
[tex]y=7x+0[/tex]
The slope is [tex]7[/tex].
Answer:
3.) [tex]3[/tex]
4.) [tex]\frac{1}{2}[/tex]
5.) [tex]40[/tex]
6.) [tex]15[/tex]
7.) [tex]8.25[/tex]
Step-by-step explanation:
3.) [tex]5y=15x[/tex]
Solve for y and convert to slope-intercept form:
Isolate the variable, y, by dividing both sides by 5:
[tex]\frac{5y}{5}=\frac{15x}{5}\\\\ y=3x[/tex]
This can be seen as:
[tex]y=3x+0[/tex]
The slope is [tex]3[/tex].
4.) [tex]8y=4x[/tex]
Solve for y and convert to slope-intercept form:
Isolate the variable y by dividing both sides by 8:
[tex]\frac{8y}{8} =\frac{4x}{8} \\\\y=\frac{1}{2}x[/tex]
This can be seen as:
[tex]y=\frac{1}{2} x+0[/tex]
The slope is [tex]\frac{1}{2}[/tex].
5-7:
When you are given coordinate points, use the slope formula:
[tex](x_{1},y_{1})\\\\(x_{2},y_{2})\\\\\frac{y_{2}-y_{1}}{x_{2}-x_{1}} =slope[/tex]
5.) Take two points:
[tex](1,40)(2,80)[/tex]
Insert into the slope formula:
[tex]\frac{80-40}{2-1}= \frac{40}{1}=40[/tex]
The slope is [tex]40[/tex].
6.) Take two points:
[tex](2,30)(4,60)[/tex]
Insert into the slope formula:
[tex]\frac{60-30}{4-2} =\frac{30}{2} =15[/tex]
The slope is [tex]15[/tex].
7.) Take two points:
[tex](5,41.25)(10,82.50)[/tex]
Insert into the slope formula:
[tex]\frac{82.50-41.25}{10-5}=\frac{41.25}{5} =8.25[/tex]
The slope is [tex]8.25[/tex].