Respuesta :
Answer
QR= PQ= PR
18x+1= 24x-17
18x-24x= -17-1
-6x= -18
x= 3
QR= 24(3)-17= 55
PQ= 18(3)+1= 55
PR= 15(3)+10=55
Answer:
The value of x is 3. The length of PQ, QR and PR are 55.
Step-by-step explanation:
Given that the lengths in an equilateral triangle are all the same. We can assume that PQ = QR = PR. So we can choose any 2 lengths and compare it :
[tex]PQ = QR[/tex]
[tex]18x + 1 = 24x - 17[/tex]
[tex]1 + 17 = 24x - 18x[/tex]
[tex]6x = 18[/tex]
[tex]x = 18 \div 6[/tex]
[tex]x = 3[/tex]
Next, we have to substitute x = 3 into the expressions :
[tex]PQ = 18(3) + 1 = 55[/tex]
[tex]QR = 24(3) - 17 = 55[/tex]
[tex]PR = 15(3) + 10 = 55[/tex]