Respuesta :

Answer:

Proof in explanation

Step-by-step explanation:

Trigonometric Identities

The basic trigonometric identity is:

[tex]\sin^2\theta+\cos^2\theta=1[/tex]

We'll use it and some basic algebra to prove that, given:

[tex]a sin^3\theta+b cos^3\theta=sin\theta cos\theta[/tex]

And

[tex]a\sin\theta-b\cos\theta=0[/tex]

Then

[tex]a^2+b^2=1[/tex]

From the equation:

[tex]a\sin\theta-b\cos\theta=0[/tex]

We have:

[tex]a\sin\theta=b\cos\theta\qquad [1][/tex]

The equation

[tex]a sin^3\theta+b cos^3\theta=sin\theta cos\theta[/tex]

Can be rewritten as

[tex]a\sin\theta \sin^2\theta+b \cos^3\theta=\sin\theta \cos\theta[/tex]

Replacing [1]:

[tex]b\cos\theta \sin^2\theta+b \cos^3\theta=\sin\theta \cos\theta[/tex]

Taking the common factor:

[tex]b\cos\theta (\sin^2\theta+ \cos^2\theta)=\sin\theta \cos\theta[/tex]

The expression in parentheses is 1, thus:

[tex]b\cos\theta =\sin\theta \cos\theta[/tex]

Dividing by [tex]\cos\theta[/tex]

[tex]b=\sin\theta[/tex]

Replacing in

[tex]a\sin\theta=b\cos\theta[/tex]

We have

[tex]a\sin\theta=\sin\theta\cos\theta[/tex]

Dividing by [tex]\sin\theta[/tex]

[tex]a=\cos\theta[/tex]

Now:

[tex]a^2+b^2=(\cos\theta)^2+(\sin\theta)^2[/tex]

This expression is 1, thus it's proven:

[tex]\boxed{a^2+b^2=1}[/tex]