Respuesta :

Given:

The figure.

To find:

The segment bisector of MN and value of MN.

Solution:

From the given figure it is clear that ray RP,i.e., [tex]\overrightarrow {RP}[/tex] is the segment bisector of MN because it divides segment MN in two equal parts.

Now,

[tex]3\dfrac{5}{6}=\dfrac{3\times 6+5}{6}[/tex]

[tex]3\dfrac{5}{6}=\dfrac{23}{6}[/tex]

Since, [tex]\overrightarrow {RP}[/tex] is the segment bisector of MN, therefore,

[tex]MN=2\times \dfrac{23}{6}[/tex]

[tex]MN=\dfrac{23}{3}[/tex]

[tex]MN=7\dfrac{2}{3}[/tex]

Therefore, the length of MN is [tex]7\dfrac{2}{3}[/tex].