Given:
The figure.
To find:
The segment bisector of MN and value of MN.
Solution:
From the given figure it is clear that ray RP,i.e., [tex]\overrightarrow {RP}[/tex] is the segment bisector of MN because it divides segment MN in two equal parts.
Now,
[tex]3\dfrac{5}{6}=\dfrac{3\times 6+5}{6}[/tex]
[tex]3\dfrac{5}{6}=\dfrac{23}{6}[/tex]
Since, [tex]\overrightarrow {RP}[/tex] is the segment bisector of MN, therefore,
[tex]MN=2\times \dfrac{23}{6}[/tex]
[tex]MN=\dfrac{23}{3}[/tex]
[tex]MN=7\dfrac{2}{3}[/tex]
Therefore, the length of MN is [tex]7\dfrac{2}{3}[/tex].