Under what conditions is a linear function f(x) = mx + b, m ≠ 0, a linear transform? (Enter conditions as a comma-separated list of equations and inequalities. If there are no conditions under which the function is a linear transform, enter NONE.)

Respuesta :

Answer:

the condition is b= 0

Step-by-step explanation:

Given that:

The  a linear function f(x) = mx + b, m ≠ 0

Recall that:

A function is a linear function if:

[tex]f(x_1 + x_2) = f(x_1) + f(x_2)[/tex]

[tex]f(cx) = cf(x)[/tex]

So, if:

[tex]f(x_1+x_2) = m(x_1+x_2) + b[/tex]

Then

[tex]f(x_1+x_2) = mx_1+mx_2+ b[/tex]

[tex]f(x_1+x_2) = f(x_1) + f(x_2) -b[/tex]

[tex]f(x_1 + x_2) = f(x_1 +x_2)[/tex]     if   b = 0

[tex]f(cx) = m (cx) + b[/tex]

[tex]f(cx) =c(mx) + b[/tex]

[tex]f(cx) =cf(x)[/tex]    if    b = 0

Therefore, the condition is b= 0