A company produces two types of solar panels per year: x thousand of type A and y thousand from type B. The revenue and costs equations, in millions of dollars, for the year given as follows
R(x,y) = 5x+3y
c(x,y) = x2 -3xy+8y2 +11x-52y-3
Determine how many soalr panels of each type should be produced per year to maximize profit.
The company will achieve a maximum profit by selling (X) solar panels of type A and selling (X) solar panels of type B.

Respuesta :

Answer:

The  profit is [tex]P(3,4) =  \$104 \  millon[/tex]

 The  number of solar panels of type a is  3 thousand

   The number of solar panels of type B is  4 thousand

Step-by-step explanation:

From the question we are told that

  The  revenue function is  [tex]R(x,y) =  5x + 3y[/tex]

  The  cost function is [tex]c (x,y)  =  x^2 -3xy + 8y^2 + 11x -52y-3[/tex]

Generally the profit function is mathematically represented as

    [tex]P(x,y) =  R(x,y) -c(x,y) =  5x + 3y -x^2 +3xy -8y^2-11x+52y+3[/tex]

Now the next step is to differentiate the profit function partially

    [tex]P_x  =  \frac{\delta P}{\delta x } =  -2x+3y-6[/tex]

   [tex]P_y  =  \frac{\delta P}{\delta y}  =  3x - 16y+56[/tex]

At maximum or minimum [tex]P_x  =  0[/tex] so

     [tex]-2x +3y-6 = 0 --- (1)[/tex]

and  [tex]P_y  =  0[/tex]

So

    [tex]3x -16y +56 =  0 ---(2)[/tex]

Solving equation 1 and 2 simultaneously using substitution method

      From 1

     [tex]x =  \frac{-6+3y}{2}[/tex]

substituting this to 2

         [tex]3[\frac{-6+3y}{2} ] -16y + 56 = 0[/tex]

multiply through by 2

       [tex]-18+ 9y - 32y + 112  = 0[/tex]

=>  [tex]y  =  4[/tex]

So

    [tex]x =  \frac{-6+3 (4)}{2} =  3[/tex]

So the critical point is   (v,w) =  (3, 4)

Now differentiating [tex]P_x[/tex]  partially and substituting the critical point s we have

     [tex]P_{xx} |_{3,4}= -2[/tex]

Now differentiating [tex]P_y[/tex]  partially and substituting the critical point s we have

     [tex]P_{yy} |_{3,4}= -16[/tex]

      [tex]P_{xy} |_{3,4}=  3[/tex]

Now to determine whether the obtained critical point is maximum or minimum the expression

     [tex]D  =  P_{xx}|_{3,4} * P_{yy}|_{3,4} - [P_{xy}|_{3,4} ]^2[/tex] must be greater than zero so

      [tex](-2) *  (-16)- 3^2 = 23>0[/tex]

So \

The maximum price is mathematically evaluated as

     [tex]P(3,4) = 5(3) + 3(4) -(3)^2 +3(3)(4) -8(4)^2-11(3)+52(4)+3[/tex]

     [tex]P(3,4) =  \$104 \  millon[/tex]

So

 The  number of solar panels of type a is  3 thousand

   The number of solar panels of type B is  4 thousand