The following equation of a quadratic function is given in standard form. f(x) = x²- 2x + 2 Determine the vertex for each quadratic. Round your answers to the nearest tenth if necessary. (x, y) = ______.

Respuesta :

Answer:

The vertex for each quadratic is [tex](x,y) = (1,1)[/tex]

Step-by-step explanation:

To determine the vertex for each quadratic,

The vertex of the [tex]x[/tex] coordinate can be determined using the formula,

[tex]x-vertex = \frac{-b}{2a}[/tex]

The standard form of the quadratic function is

[tex]f(x) = ax^{2} + bx + c[/tex]

Hence, for the given equation of the quadratic function,

[tex]f(x) = x^{2} -2x +2[/tex]

[tex]a = 1[/tex]

[tex]b = -2[/tex]

and [tex]c = 2[/tex]

Hence, [tex]x-vertex[/tex] becomes,

[tex]x-vertex = \frac{-b}{2a}[/tex]

[tex]x-vertex = \frac{--2}{2(1)}[/tex]

[tex]x-vertex = \frac{2}{2}[/tex]

∴[tex]x - vertex = 1[/tex]

This is the vertex for the [tex]x-coordinate[/tex]

To determine, the vertex for the [tex]y-coordinate[/tex]

We will put the value of the vertex of the [tex]x-coordinate[/tex] in the equation and write

[tex]y-vertex = x^{2} - 2x + 2[/tex]

Then,

[tex]y-vertex = (1)^{2} -2(1) + 2[/tex]

[tex]y-vertex = 1 - 2 +2\\y-vertex = 1[/tex]

This the vertex for the [tex]y-coordinate[/tex]

Hence, [tex](x,y) = (1,1)[/tex]