Answer:
[tex]f'(3)=100[/tex]
Step-by-step explanation:
Given:
[tex]f(t)=u(t)\cdot v(t)\\u(3)=\left ( 1,2,-2 \right )\\u'\left ( 3 \right )=\left ( 8,1,4 \right )\\v(t)=\left ( t,t^{2},t^{3} \right )[/tex]
To find: [tex]f'(3)[/tex]
Solution:
[tex]v(t)=\left ( t,t^{2},t^{3} \right )[/tex]
At [tex]t=3;[/tex]
[tex]v(3)=(3,3^{2},3^{3} )=(3,9,27)[/tex]
Differentiate with respect to t
[tex]v'(t)=\left ( 1,2t,3t^{2} \right )[/tex]
At [tex]t=3;[/tex]
[tex]v'(3)=\left ( 1,2(3),3(3)^{2} \right )=\left ( 1,6,27 \right )[/tex]
Using product rule, differentiate [tex]f(t)=u(t)\cdot v(t)[/tex] with respect to [tex]t[/tex]
[tex]f'(t)=u'(t)\cdot v(t)+u(t)\cdot v'(t)[/tex]
At [tex]t=3;[/tex]
[tex]f'(3)=u'(3)\cdot v(3)+u(3)\cdot v'(3)\\=\left ( 8,1,4 \right )\cdot \left ( 3,9,27 \right )+\left ( 1,2,-2 \right )\cdot \left ( 1,6,27 \right )\\=24+9+108+1+12-54\\=100[/tex]