Since cos(x) is the derivative of sin(x), then integral 16 sin^2(x) cos(x) dx can be done by substituting u = sin (x) sin (x) and du = cos (x) cos (x)^dx. With the substitution u = sin(x), we get integral 16 sin^2 (x) cos(x) dx = 16 integral u^2 du. which integrates to + C. Substituting back in to get the answer in terms of sin(x), we have integral 16 sin^2 (x) cos (x) dx = + C.

Respuesta :

Complete

Find the integral of  [tex]f(x) =  16sin^2 (x ) cos(x) dx[/tex]

Answer:

The solution is    [tex]\frac{16}{3} sin^{3}x + c[/tex]

Step-by-step explanation:

So

   [tex]Let \  u  =  sin(x)[/tex]

=>  [tex]\frac{du}{dx}  =  cos (x)[/tex]

=>   [tex]du  =  cos(x)dx[/tex]

So

   [tex]\int\limits {16sin^2 (x ) cos(x) dx} \, \equiv \int\limits {16u^2  du}[/tex]

=>  [tex]\int\limits {16u^2  du} = 16 [\frac{u^3}{3} ] + c[/tex]

Now substituting sin(x) for u  

      [tex]\frac{16}{3} u^3 + c  =  \frac{16}{3} sin^{3}x + c[/tex]

So the  integral of  [tex]f(x) =  16sin^2 (x ) cos(x) dx[/tex]  is

      [tex]\frac{16}{3} sin^{3}x + c[/tex]