Complete
Find the integral of [tex]f(x) = 16sin^2 (x ) cos(x) dx[/tex]
Answer:
The solution is [tex]\frac{16}{3} sin^{3}x + c[/tex]
Step-by-step explanation:
So
[tex]Let \ u = sin(x)[/tex]
=> [tex]\frac{du}{dx} = cos (x)[/tex]
=> [tex]du = cos(x)dx[/tex]
So
[tex]\int\limits {16sin^2 (x ) cos(x) dx} \, \equiv \int\limits {16u^2 du}[/tex]
=> [tex]\int\limits {16u^2 du} = 16 [\frac{u^3}{3} ] + c[/tex]
Now substituting sin(x) for u
[tex]\frac{16}{3} u^3 + c = \frac{16}{3} sin^{3}x + c[/tex]
So the integral of [tex]f(x) = 16sin^2 (x ) cos(x) dx[/tex] is
[tex]\frac{16}{3} sin^{3}x + c[/tex]