Write an equation in slope-intercept form of the line that is a segment bisector of both AB and CD. Ay 4 B(6,3) A(-4,1) -4 -2 2. 4 6 X D(5, -1) -2 4 C1-1,-5) -6​

Respuesta :

Answer:

y = -5x + 7

Step-by-step explanation:

Given that the location of the points are:

A(-4, 1), B(6, 3), C(-1, -5) and D(5, -1)

The location of the bisector of a line is given as:

[tex]x=\frac{x_1+x_2}{2} \\\\y=\frac{y_1+y_2}{2}[/tex]

If E(x1, y1) is the bisector of segment AB then the location of E is at:

[tex]x_1 =\frac{-4+6}{2}=1 \\\\y_1=\frac{1+3}{2}=2[/tex]

Hence E is at (1, 2)

If F(x2, y2) is the bisector of segment CD then the location of F is at:

[tex]x_2 =\frac{-1+5}{2}=2 \\\\y_2=\frac{-5-1}{2}=-3[/tex]

Hence F is at (2, -3)

Hence the line that is a segment bisector of both AB and CD pass through the point (1, 2) and (2, -3).

The equation of the line is given by:

[tex]y-y_1=\frac{y_2-y_1}{x_2-x_1}(x-x_1)\\\\y-2=\frac{-3-2}{2-1}(x-1)\\ \\y-2=-5(x-1)\\\\y-2=-5x+5\\\\y=-5x+7[/tex]

Answer: The equation is: y = -5x + 7.

Step-by-step explanation:

Given that the location of the points are:

A(-4, 1), B(6, 3), C(-1, -5) and D(5, -1).

Midpoint of A(-4, 1), B(6, 3) is = [tex]\left(\frac{\left(-4+6\right)}{2},\frac{\left(1+3\right)}{2}\right)=(1,2)[/tex].

Midpoint of C(-1, -5) and D(5, -1) is [tex]\left(\frac{\left(-1+5\right)}{2},\frac{\left(-5-1\right)}{2}\right)=(2,-3)[/tex].

Using point slope formula:

[tex]\frac{y-2}{x-1}=\frac{-3-2}{2-1}\\\frac{y-2}{x-1}=-5\\y-2=-5x+5\\y=-5x+7[/tex]

Learn more: https://brainly.com/question/1594198