Find and simplify the following for f(x)= x(21-x), assuming h#0 in (C). (A) f(x +h) (B) f(x+h) – f(x) (C) f(x+h) – f(x) (D) f(x+h)=

Respuesta :

Answer:

A

[tex]f(x + h) = 21x -x^2 -2xh+ 21h+h^2[/tex]

B

[tex]f(x-h)-f(x) = 21h+h^2 -2xh[/tex]

C

[tex]\frac{f(x-h)-f(x)}{h} = 21+h -2x[/tex]

Step-by-step explanation:

From the question we are told that

   The equation given is

                    [tex]f(x) = x (21 - x )[/tex]

Considering  A

      [tex]f(x + h) = (x + h) (21 - (x + h))[/tex]

      [tex]f(x + h) = (x + h) (21 - x - h)[/tex]

      [tex]f(x + h) = 21x -x^2 -2xh+ 21h+h^2[/tex]

Considering B

       [tex]f(x + h)-f(x) = 21x -x^2 -2xh+ 21h+h^2 -[ x(21 -x)][/tex]

        [tex]f(x + h)-f(x) = 21x -x^2 -2xh+ 21h+h^2 -21x + x^2[/tex]

       [tex]f(x-h)-f(x) = 21h+h^2 -2xh[/tex]

Considering C

       [tex]\frac{f(x-h)-f(x)}{h} = \frac{21h+h^2 -2xh}{h}[/tex]  

       [tex]\frac{f(x-h)-f(x)}{h} = \frac{h(21+h -2x)}{h}[/tex]

       [tex]\frac{f(x-h)-f(x)}{h} = 21+h -2x[/tex]