1. Multiply the following polynomials to write an equivalent expression.
Part A: -7x2y2 (8x2y – 5xy + 11xy2 – 31)
Part B: (t3 – 5t) E+2 – 3t)
Part C: (4x2 – 7x + 5)(2x - 5)
Part D: (3m2 - 5m + 2)2

1 Multiply the following polynomials to write an equivalent expression Part A 7x2y2 8x2y 5xy 11xy2 31 Part B t3 5t E2 3t Part C 4x2 7x 52x 5 Part D 3m2 5m 22 class=

Respuesta :

Answer/Step-by-step explanation:

A. [tex] -7x^2y^2(8x^2y - 5xy + 11xy^2 - 31) [/tex]

[tex] -7x^2y^2(8x^2y) - (-7x^2y^2)(5xy) + (-7x^2y^2)(11xy^2) - (-7x^2y^2)(31) [/tex] (distributive property)

[tex] -56x^4y^3 + 35x^3y^3 - 77x^3y^4 + 217x^2y^2 [/tex] (note: - × - = + and - × + = -)

B. [tex] (\frac{4}{5}t^3 - 5t)(\frac{1}{4}t^2 - 3t) [/tex]

[tex] (\frac{4}{5}t^3)(\frac{1}{4}t^2 - 3t) - 5t(\frac{1}{4}t^2 - 3t) [/tex] (distributive property)

[tex] \frac{4*1}{5*4}t^3*t^2 - \frac{4*3}{5}t^3*t - \frac{5*1}{4}t*t^2 + 15t^2 [/tex]

[tex] \frac{1}{5}t^5 - \frac{12}{5}t^3 - \frac{5}{4}t^3 + 15t^2 [/tex]

Combine like terms

[tex] \frac{1}{5}t^5 - \frac{73}{20}t^3 + 15t^2 [/tex] (note: -12/5 - 5/4 = -73/20)

C. (4x² - 7x + 5)(2x - 5)

4x²(2x - 5) - 7x(2x - 5) + 5(2x - 5) (distributive property)

8x³ - 20x² - 14x² + 35x + 10x - 25

Combine like terms

8x³ - 34x² + 45x - 25

D. (3m² - 5m + 2)²

= (3m² - 5m + 2)(3m² - 5m + 2)

= 3m²(3m² - 5m + 2) - 5m(3m² - 5m + 2) + 2(3m² - 5m + 2) (distributive property)

= 9m⁴ - 15m³ + 6m² - 15m³ + 25m² - 10m + 6m² - 10m + 4

Combine like terms

= 9m⁴ - 15m³ - 15m³ + 6m² + 25m² + 6m² - 10m - 10m + 4

= 9m⁴ - 30m³ + 37m² - 20m + 4