Respuesta :

Answer:  see proof below

Step-by-step explanation:

Use the following Product to Sum Identities:

2 sin A · cos B = sin (A + B) + sin (A - B)

2 cos A · cos B = sin (A + B) + sin (A - B)

Given:  cos A + cos B = 1/2      and      sin A + sin B = 1/4  

Proof LHS → RHS

[tex]\text{LHS:}\qquad \qquad \qquad \tan\dfrac{A+B}{2}[/tex]

[tex]\text{Expand:}\qquad \qquad \dfrac{\sin\frac{(A+B)}{2}}{\cos\frac{(A+B)}{2}}[/tex]

[tex]\text{Multiplication:}\qquad \quad \dfrac{\sin\frac{(A+B)}{2}}{\cos\frac{(A+B)}{2}}\bigg(\dfrac{2\cos\frac{A-B}{2}}{2\cos \frac{A-B}{2}}\bigg)[/tex]

[tex]\text{Simplify:}\qquad \qquad \quad \dfrac{2\sin \frac{A+B}{2}\cdot \cos \frac{A-B}{2}}{2\cos \frac{A+B}{2}\cdot \cos \frac{A-B}{2}}[/tex]

[tex]\text{Product to Sum:}\qquad \dfrac{\sin A+\sin B}{\cos A+\cos B}[/tex]

[tex]\text{Given:}\qquad \qquad \qquad \quad \dfrac{\frac{1}{4}}{\frac{1}{2}}[/tex]

[tex]\text{Simplify:}\qquad \qquad \qquad \dfrac{1}{2}[/tex]

LHS = RHS:    1/2 = 1/2  [tex]\checkmark[/tex]

Ver imagen tramserran