Respuesta :
[tex]\sf{\pink{\underline{\underline{\blue{GIVEN:-}}}}}[/tex]
- The angle between the two vectors is 90° .
[tex]\sf{\pink{\underline{\underline{\blue{TO\: FIND:-}}}}}[/tex]
- The dot product of two vectors .
- The cross product of two vectors .
[tex]\sf{\pink{\underline{\underline{\blue{SOLUTION:-}}}}}[/tex]
⚡ Let [tex]\rm{\vec{a}}[/tex] and [tex]\rm{\vec{b}}[/tex] are the two vectors .
✍️ We have know that,
[tex]\orange\bigstar\:\rm{\pink{\boxed{\green{\vec{a}\:.\:\vec{b}\:=\:ab\cos{\theta}\:}}}}[/tex]
Where,
- θ = 90°
[tex]\rm{\implies\:\vec{a}\:.\:\vec{b}\:=\:ab\cos{90^{\degree}}\:}[/tex]
- cos 90° = 0
[tex]\rm{\implies\:\vec{a}\:.\:\vec{b}\:=\:ab\times{0}\:}[/tex]
[tex]\rm{\implies\:\vec{a}\:.\:\vec{b}\:=\:0\:}[/tex]
[tex]\rm{\red{\therefore}}[/tex] [1] The dot product of two vectors is “ 0 ” .
✍️ We have know that,
[tex]\orange\bigstar\:\rm{\pink{\boxed{\green{\vec{a}\:\times\:\vec{b}\:=\:ab\sin{\theta}\:}}}}[/tex]
Where,
- θ = 90°
[tex]\rm{\implies\:\vec{a}\:\times\:\vec{b}\:=\:ab\sin{90^{\degree}}\:}[/tex]
- sin 90° = 1
[tex]\rm{\implies\:\vec{a}\:\times\:\vec{b}\:=\:ab\times{1}\:}[/tex]
[tex]\rm{\implies\:\vec{a}\:\times\:\vec{b}\:=\:ab\:}[/tex]
[tex]\rm{\red{\therefore}}[/tex] [2] The cross product of two vectors is “ ab ” .
the dot and cross product will become zero if the angle becomes 90°
hope it helps you...
#from india ✌✌✌