Respuesta :

Answer:

Option (2)

Explanation:

From the figure attached,

Horizontal component, [tex]A_x=A\text{Sin}37[/tex]

[tex]A_x=12[\text{Sin}(37)][/tex]

     = 7.22 m

Vertical component, [tex]A_y=A[\text{Cos}(37)][/tex]

    = 9.58 m

Similarly, Horizontal component of vector C,

[tex]C_x[/tex]  = C[Cos(60)]

     = 6[Cos(60)]

     = [tex]\frac{6}{2}[/tex]

     = 3 m

[tex]C_y=6[\text{Sin}(60)][/tex]

    = 5.20 m

Resultant Horizontal component of the vectors A + C,

[tex]R_x=7.22-3=4.22[/tex] m

[tex]R_y=9.58-5.20[/tex] = 4.38 m

Now magnitude of the resultant will be,

From ΔOBC,

[tex]R=\sqrt{(R_x)^{2}+(R_y)^2}[/tex]

   = [tex]\sqrt{(4.22)^2+(4.38)^2}[/tex]

   = [tex]\sqrt{17.81+19.18}[/tex]

   = 6.1 m

Direction of the resultant will be towards vector A.

tan(∠COB) = [tex]\frac{\text{CB}}{\text{OB}}[/tex]

                  = [tex]\frac{R_y}{R_x}[/tex]

                  = [tex]\frac{4.38}{4.22}[/tex]

m∠COB = [tex]\text{tan}^{-1}(1.04)[/tex]

             = 46°

Therefore, magnitude of the resultant vector will be 6.1 m and direction will be 46°.

Option (2) will be the answer.

Ver imagen eudora
Ver imagen eudora