Answer:
(-1, -4.8)
Step-by-step Explanation:
Let the point be P, which is 3/10 of the way from A to B. This means, it divides P into AP and PB in the ratio, 3:10 = AP/PB = 3/10.
Apply the formula for internal division to find the coordinates which is given as:
[tex] x = \frac{mx_2 + nx_1}{m + n} [/tex]
[tex] y = \frac{my_2 + ny_1}{m + n} [/tex]
Where,
[tex] A(-4, -8) = (x_1, y_1) [/tex]
[tex] B(9, 6) = (x_2, y_2) [/tex]
[tex] m = 3, n = 10 [/tex]
Plug in the necessary values to find x and y coordinates for point P
[tex] x = \frac{mx_2 + nx_1}{m + n} [/tex]
[tex] x = \frac{3(9) + 10(-4)}{3 + 10} [/tex]
[tex] x = \frac{27 - 40}{13} [/tex]
[tex] x = \frac{-13}{13} [/tex]
[tex] x = -1 [/tex]
[tex] y = \frac{my_2 + ny_1}{m + n} [/tex]
[tex] y = \frac{3(6) + 10(-8)}{3 + 10} [/tex]
[tex] y = \frac{18 - 80}{13} [/tex]
[tex] y = \frac{-62}{13} [/tex]
[tex] y = \frac{-62}{13} [/tex]
[tex] y = -4.8 [/tex]
The coordinates of the point 3/10 of the way from A to B are (-1, -4.8)