Respuesta :

Answer:

(-1, -4.8)

Step-by-step Explanation:

Let the point be P, which is 3/10 of the way from A to B. This means, it divides P into AP and PB in the ratio, 3:10 = AP/PB = 3/10.

Apply the formula for internal division to find the coordinates which is given as:

[tex] x = \frac{mx_2 + nx_1}{m + n} [/tex]

[tex] y = \frac{my_2 + ny_1}{m + n} [/tex]

Where,

[tex] A(-4, -8) = (x_1, y_1) [/tex]

[tex] B(9, 6) = (x_2, y_2) [/tex]

[tex] m = 3, n = 10 [/tex]

Plug in the necessary values to find x and y coordinates for point P

[tex] x = \frac{mx_2 + nx_1}{m + n} [/tex]

[tex] x = \frac{3(9) + 10(-4)}{3 + 10} [/tex]

[tex] x = \frac{27 - 40}{13} [/tex]

[tex] x = \frac{-13}{13} [/tex]

[tex] x = -1 [/tex]

[tex] y = \frac{my_2 + ny_1}{m + n} [/tex]

[tex] y = \frac{3(6) + 10(-8)}{3 + 10} [/tex]

[tex] y = \frac{18 - 80}{13} [/tex]

[tex] y = \frac{-62}{13} [/tex]

[tex] y = \frac{-62}{13} [/tex]

[tex] y = -4.8 [/tex]

The coordinates of the point 3/10 of the way from A to B are (-1, -4.8)