Respuesta :

Answer:

Solution: 9.43

Step-by-step explanation:

Remember that we can determine the distance between any two points using the distance formula, d = √(x₂ - x₁)² + (y₂ - y₁)². Let's substitute known values to determine the distance:

[tex]\mathrm{Compute\:the\:distance\:between\:}\left(x_1,\:y_1\right),\:\left(x_2,\:y_2\right):\quad \sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2},}\\ \\\\\mathrm{d}= \sqrt{(4 - (-4))^2 + (0 - 5)^2} = \sqrt{(4 + 4)^2 + (- 5)^2} \\= \sqrt{(8)^2 + 25} = \sqrt{64 + 25} = \sqrt{89}[/tex]

Hence the distance between the points (-4,5) and (4,0) is exactly √89. The question asks us to round off to the nearest hundredth, so your solution will be approximated off to two digits → 9.43.