Respuesta :
Question:
Express each vector as a product of its length and direction.
[tex]\frac{1}{\sqrt{6}}i - \frac{1}{\sqrt{6}}j - \frac{1}{\sqrt{6}}k[/tex]
Answer:
[tex]\frac{1}{\sqrt{2}}[/tex] [tex](\frac{1}{\sqrt{3}}i - \frac{1}{\sqrt{3}}j - \frac{1}{\sqrt{3}}k)[/tex]
Step-by-step explanation:
A vector v can be expressed as a product of its length and direction as follows;
v = |v| u
Where;
|v| = length/magnitude of v
u = unit vector in the direction of v
---------------------------------------------------------------------------------------
Let the given vector be v, i.e
[tex]v = \frac{1}{\sqrt{6}}i - \frac{1}{\sqrt{6}}j - \frac{1}{\sqrt{6}}k[/tex]
(i) The length/magnitude |v| of vector v is therefore,
|v| = [tex]\sqrt{(\frac{1}{\sqrt{6}})^2 + (-\frac{1}{\sqrt{6}})^2 + (-\frac{1}{\sqrt{6}})^2[/tex]
|v| = [tex]\sqrt{(\frac{1}{6}) + (\frac{1}{6}) + (\frac{1}{6})[/tex]
|v| = [tex]\sqrt{(\frac{3}{6})[/tex]
|v| = [tex]\sqrt{(\frac{1}{2})[/tex]
|v| = [tex]\frac{1}{\sqrt{2}}[/tex]
(ii) The unit vector u in the direction of vector v, is therefore,
u = [tex]\frac{v}{|v|}[/tex]
[tex]u = \frac{\frac{1}{\sqrt{6}}i - \frac{1}{\sqrt{6}}j - \frac{1}{\sqrt{6}}k}{\frac{1}{\sqrt{2}}}[/tex]
[tex]u = \sqrt{2}(\frac{1}{\sqrt{6}}i - \frac{1}{\sqrt{6}}j - \frac{1}{\sqrt{6}}k)[/tex]
[tex]u = (\frac{\sqrt{2}}{\sqrt{6}}i - \frac{\sqrt{2}}{\sqrt{6}}j - \frac{\sqrt{2}}{\sqrt{6}}k)[/tex]
[tex]u = (\frac{1}{\sqrt{3}}i - \frac{1}{\sqrt{3}}j - \frac{1}{\sqrt{3}}k)[/tex]
Therefore, the vector can be expressed as a product of its length and direction as:
|v| u = [tex]\frac{1}{\sqrt{2}}[/tex] [tex](\frac{1}{\sqrt{3}}i - \frac{1}{\sqrt{3}}j - \frac{1}{\sqrt{3}}k)[/tex]