Someone plans to float a small, totally absorbing sphere 0.518 m above an isotropic point source of light, so that the upward radiation force from the light matches the downward gravitational force on the sphere. The sphere's density is 22.2 g/cm3, and its radius is 2.12 mm. (a) What power would be required of the light source

Respuesta :

Answer:

Explanation:

From the question we are told that

  The  height is  [tex]h  =  0.518 \  m[/tex]

    The  sphere density is  [tex]\rho =  22.2g/cm^3 =  \frac{22.2 }{1000}  *  1*10^{6} =  22200 kg/m^3[/tex]

    The  radius is  [tex]r =  2.12 \  mm =0.00212 \ m[/tex]

Generally the power required  is mathematically represented as

   [tex]P  =  \frac{16 *  \pi *  \rho *  r *  g *  h^2 * c }{3}[/tex]

substituting values  

    [tex]P  =  \frac{16 * 3.142 *  22200 *  0.00212 *  9.8 *  0.518^2 *  3.0*10^{8}}{ 3}[/tex]

   [tex]P  = 6.22*10^{11} \  W[/tex]