Evaluate the geometric series or state that it diverges. sigma^infinity_k=0(8/9)^k Select the correct choice below and, if necessary, fill in the answer box to complete your choice. sigma^infinity_k=0(8/9)^k The series diverges.

Respuesta :

The series converges, since |8/9| = 8/9 < 1.

Let [tex]S_n[/tex] denote the n-th partial sum of the series,

[tex]S_n=\displaystyle\sum_{k=0}^n\left(\frac89\right)^k[/tex]

[tex]S_n=1+\dfrac89+\left(\dfrac89\right)^2+\cdots+\left(\dfrac89\right)^n[/tex]

Multiply both sides by 8/9:

[tex]\dfrac89S_n=\dfrac89+\left(\dfrac89\right)^2+\left(\dfrac89\right)^3+\cdots+\left(\dfrac89\right)^{n+1}[/tex]

Subtract this from [tex]S_n[/tex] to eliminate all but the first term in

[tex]S_n-\dfrac89S_n=1-\left(\dfrac89\right)^{n+1}[/tex]

Solve for [tex]S_n[/tex]:

[tex]\dfrac19S_n=1-\left(\dfrac89\right)^{n+1}[/tex]

[tex]S_n=9-9\left(\dfrac89\right)^{n+1}[/tex]

As [tex]n\to\infty[/tex], the exponential term vanishes, so that

[tex]\displaystyle\lim_{n\to\infty}S_n=\sum_{k=0}^\infty\left(\frac89\right)^k=\boxed{9}[/tex]