Respuesta :
Answer:
1. [tex]TV = 68[/tex]
2. [tex]x = 7[/tex]
3. [tex]x = 21[/tex]
4. [tex]CD = 8[/tex]
Step-by-step explanation:
Solving (1):
Given
[tex]RT = 63[/tex]
[tex]RV = 131[/tex]
Required
Determine TV
To solve TV, we make use of the following formula;
[tex]RV = RT + TV[/tex]
Substitute values for RT and RV
[tex]131 = 63 + TV[/tex]
Make TV the subject of formula
[tex]TV = 131 - 63[/tex]
[tex]TV = 68[/tex]
Solving (2):
Given
[tex]MN = 26[/tex]
[tex]MP = x + 4[/tex]
[tex]PN = 2x + 1[/tex]
Required
FInd x
To solve x, we make use of the following formula;
[tex]MN = MP + PN[/tex]
Substitute values for MP, MN and NP
[tex]26 =x + 4 + 2x + 1[/tex]
Collect Like Terms
[tex]2x + x = 26 - 4 -1[/tex]
[tex]3x = 21[/tex]
Divide both sides by 3
[tex]x = 7[/tex]
Solving (3):
Given
[tex]HM = 4x - 12[/tex]
[tex]MJ = 3x + 9[/tex]
Required
Find x
Since M is the midpoint;
[tex]HM = MJ[/tex]
This gives
[tex]4x - 12 = 3x + 9[/tex]
Collect Like Terms
[tex]4x - 3x = 12 + 9[/tex]
[tex]x = 21[/tex]
Solving (4):
Given
[tex]CE = 6x + 2[/tex]
[tex]DE = 2x + 4[/tex]
Required
FInd CD
Since D is the midpoint;
[tex]CD= DE[/tex]
and
[tex]CE = CD + DE[/tex]
Substitute CD for DE
[tex]CE = DE + DE[/tex]
[tex]CE = 2DE[/tex]
Substitute values for CE and DE
[tex]6x + 2 = 2(2x + 4)[/tex]
Open Bracket
[tex]6x + 2 = 4x + 8[/tex]
Collect Like Terms
[tex]6x - 4x = 8 - 2[/tex]
[tex]2x = 6[/tex]
Divide both sides by 2
[tex]x = 3[/tex]
Recall that;
[tex]CD= DE[/tex]
So;
[tex]CD = 2x + 4[/tex]
Substitute 2 for x
[tex]CD = 2 * 2 + 4[/tex]
[tex]CD = 4 + 4[/tex]
[tex]CD = 8[/tex]