Respuesta :
step 1
(x - 4) • (x + 5) = 0
STEP
:
A product of several terms equals zero.
When a product of two or more terms equals zero, then at least one of the terms must be zero.
We shall now solve each term = 0 separately
Solving a Single Variable Equation:
2.2 Solve : x-4 = 0
Add 4 to both sides of the equation :
x = 4
Solving a Single Variable Equation:
2.3 Solve : x+5 = 0
Subtract 5 from both sides of the equation :
x = -5
.
Answer:
A) [tex]\huge\boxed{\sf x^2 + x - 20 = 0}[/tex]
B) [tex]\huge\boxed{\sf x = - 5 \ \ \ \ OR \ \ \ \ x = 4}[/tex]
Step-by-step explanation:
[tex]\sf (x+5)(x-4) = 0[/tex]
[tex]\rule[225]{225}{2}[/tex]
Expanding:
Expanding Brackets
[tex]\sf x^2 -4x+5x-20 = 0[/tex]
Adding / Subtracting Like terms
[tex]\sf x^2 + x - 20 = 0[/tex]
[tex]\rule[225]{225}{2}[/tex]
Solving:
Given the equation:
(x+5)(x-4) = 0
Using zero Method
Either,
x + 5 = 0 OR x - 4 = 0
x = - 5 OR x = 4
[tex]\rule[225]{225}{2}[/tex]