Respuesta :

Answer:

[tex]\huge\boxed{D) \ f^{-1}(x) = (x-3)^2+2}[/tex]

Step-by-step explanation:

[tex]f(x) = \sqrt{x-2} + 3[/tex]

Replace f(x) by y

[tex]y = \sqrt{x-2} + 3[/tex]

Interchange x and y

[tex]x = \sqrt{y-2} + 3[/tex]

Solve for y

[tex]x = \sqrt{y-2} + 3[/tex]

Subtracting 3 to both sides

[tex]x - 3 = \sqrt{y-2}[/tex]

Taking square on both sides

[tex](x-3)^2 = y-2[/tex]

Adding 2 to both sides

[tex]y = (x-3)^2 + 2[/tex]

Replace [tex]y = f^{-1}(x)[/tex]

[tex]f^{-1}(x) = (x-3)^2+2[/tex]